Step of Proof: int_sq
12,41
postcript
pdf
Inference at
*
I
of proof for Lemma
int
sq
:
SQType(
)
latex
by ((Unfold `sq_type` 0)
CollapseTHEN (UnivCD
THENW (Auto_aux (first_nat 1:n) ((first_nat 1:n
TH
),(first_nat 3:n)) (first_tok :t) inil_term)))
latex
TH
1
:
TH1:
1.
x
:
TH1:
2.
y
:
TH1:
3.
x
=
y
TH1:
x
~
y
TH
.
Definitions
,
t
T
,
{
T
}
,
P
Q
,
x
:
A
.
B
(
x
)
,
SQType(
T
)
origin